LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **CHEMISTRY**

THIRD SEMESTER - NOVEMBER 2018

CH 3504 - THERMODYNAMICS

Date: 30-10-2018	Dept. No.	Max. : 100 Marks
Time: 01:00-04:00	l	ı

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. State zeroth law of thermodynamics.
- 2. Calculate the efficiency of Carnot engine operating between 300 K and 400 K.
- 3. Define enthalpy of neutralization.
- 4. Mention any two differences between endothermic and exothermic processes.
- 5. What is the need for second law of thermodynamics?
- 6. Mention the necessary criterion for spontaneous process.
- 7. State law of mass action.
- 8. Write the integrated form of van't Hoff equation.
- 9. State Dulong and Petit's law.
- 10. List out the exceptions of third law of thermodynamics.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. State the postulates of kinetic theory of gases.
- 12a. State and explain first law of thermodynamics.
 - b. Six moles of an ideal gas expand isothermally and reversibly from a volume of 1 dm^3 to a volume of 10 dm^3 at $27 \text{ }^{\circ}\text{C}$. What is the maximum work done? (2+3)
- 13. Define the following: a) Concept of enthalpy b) Intensive and extensive properties
- 14. What is heat capacity? Obtain the relationship between C_p and C_v .
- 15. Explain the various statements of second law of thermodynamics.
- 16. Derive Kirchoff's equation.
- 17. Define Enthalpy of combustion and enthalpy of dilution.
- 18. Discuss the concept of entropy.
- 19. Obtain the Maxwell's relationship of thermodynamic quantities.
- 20. Calculate the equilibrium constant of a reaction at 25 °C whose ΔG ° is -20 kJ mol⁻¹.
- 21. Obtain the relationship between K_p and K_c.
- 22. State and explain Nernst heat theorem.

1

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23a. Derive expressions for the quantity of heat and work done in reversible isothermal expansion.
 - b. State and explain Joule-Thomson effect.

(5+5)

- 24a. How would you determine the following from bond energies: (i) Resonance energy and (ii) Enthalpies of formation of compounds.
 - b. In a certain process, 600 J of work is done on a system which gives off 250 J of heat.

 Calculate the internal energy change of the system. (7+3)
- 25a. Derive Gibb's-Helmholtz equation.
 - b. Explain the thermodynamic principle of the working of refrigerator.

(5+5)

- 26a. State and explain Le Chatelier's principle.
 - b. Derive van't Hoff reaction isotherm.

(5+5)

- 27a. Obtain the van der Waals equation of state and mention the importance of critical constants.
 - b. Discuss the uses of Carnot cycle useful in obtaining the maximum convertibility of heat into work. (5+5)
- 28. How will you determine the absolute entropy of solids, liquids and gases?

\$\$\$\$\$\$\$\$\$